Jumat, 17 Juni 2011

Rumus Persamaan Lingkaran Matematika

Rumus Persamaan Lingkaran Matematika



Rumus Web mengumpulkan materi Rumus Persamaan Lingkaran Matematika ini untuk anak SMA demi UAN SNMPTN SPMB SIMAK UI. Silakan dipelajari :)
A. Persamaan Lingkaran yang berpusat di O (0, 0) dan berjari-jari r.


Dari gambar, diperoleh persamaan : OP = r


Sehingga diperoleh persamaan lingkaran dengan pusat di O dan berjari-jari r , yaitu :


Suatu titik A dikatakan :
a. Terletak pada lingkaran
b. Terletak di dalam lingkaran
c. Terletak di luar lingkaran

B. Persamaan Lingkaran yang berpusat di P (a, b) dan berjari-jari r.


Gambar di atas adalah sebuah lingkaran dengan pusat (a, b) dan berjari-jari r. Titik Q (x, y) adalah sebuah titik pada lingkaran.
Dari gambar diperoleh persamaan : PQ = r

Sehingga diperoleh persamaan lingkaran dengan pusat di P (a, b) dan berjari-jari r, yaitu :
Suatu titik A dikatakan :
a. Terletak pada lingkaran

b. Terletak di dalam lingkaran

c. Terletak di luar lingkaran


C. Persamaan Umum Lingkaran
Bila kita menjabarkan persamaan :

Dan mengatur kembali suku-sukunya, maka akan diperoleh :


Persamaan terakhir dapat pula dinyatakan dengan :

Dengan :



Persamaan (3) merupakan persamaan lingkaran dengan pusat di dan berjari-jari
D. Persamaan garis singgung lingkaran
1. Garis singgung lingkaran melalui sebuah titik lingkaran
* Garis singgung lingkaran melalui sebuah titik pada lingkaran ditentukan dengan rumus

* Persamaan garis singgung melaui titik P pada lingkaran
dinyatakan dengan rumus :


*Persamaan garis singgung melaui titik P pada lingkaran dinyatakan dengan rumus :

2. Garis singgung dengan gradien yang diketahui.

* Jika garis y = mx + n menyinggung lingkaran , maka persamaan garis singgungnya adalah : * Jika garis y = mx + n menyinggung lingkaran
Maka persamaan garis singgungnya :

3. Garis singgung melalui sebuah titik diluar lingkaran
Dari suatu titik P yang terletak di luar garis lingkaran dapat dibentuk dua garis singgung.


Persamaan umum garis singgung lingkaran melalui sebuah titik P terletak di luar garis lingkaran adalah :


Langkah menentukan gradien ( m ) untuk persamaan (10) adalah sebagai berikut :
1. Substitusikan persamaan ke persamaan lingkaran sehingga diperoleh suatu persamaan kuadrat.
2. Dengan mengambil nilai D=0 , maka dipetoleh nilai m.

Tidak ada komentar:

Posting Komentar